Our division is responsible for the highest level of time and frequency measurements in India and keeping them traceable to the International Bureau of Weights and Measures (BIPM) using ultraprecise satellite links. In simple words, we maintain the Indian Standard Time (IST). The time keeping by us is based on a bank of Cesium (Cs) atomic clocks and a Hydrogen maser. These clocks are so accurate that they would lose or gain one second in about three lakh years. The traceability of our time scale with BIPM is at the level of few nano-seconds (ns). In addition, we carry out research and development on primary atomic clocks. Our first Cs fountain clock, with an accuracy of a few parts in 10^{-15}, became operational in 2011. A second Cs Fountain is under development (project NOVOCEF). Recently, we have started developing a more accurate clock ($\approx 10^{-17}$) at optical wavelengths based on a single trapped Ytterbium ion (project STIOS).
Research Activities:

- **Precise Timing Systems**
 - Maintenance of Indian Standard Time
 - Dissemination of Time
 - Calibration and Testing

- **Microwave Frequency Standards**
 - Cesium Fountain I and Cesium Fountain II
 - Rubidium Atomic Clock for Space

- **Optical Frequency Standard**
 - Single Trapped Ion Optical Standard (STIOS)
Precise Timing Systems

CSIR-NPL Stands as TIME KEEPER of the COUNTRY

CSIR-NPL is the responsible for highest level of time and frequency measurements in India and keeping it traceable to the international standards. Time is one of the three primary units of physical measurement that has been maintained at NPL since its inception Since 1974, the time keeping has been based on one or more Cesium (Cs) atomic clocks.

The major activities in timekeeping at NPL comprise the following:

- Maintaining the group of several Cs atomic clocks with stringent environment control and clean uninterrupted power.
- Establishing a precise time transfer link (or traceability) between this time and the international time at International Bureau of Weights and Measures (BIPM), Paris using a continuous satellite link.
- Disseminating the precise time and frequency to users within the country via teleclock and NTP server.
- We undertake calibration of various frequency standards, clocks and timers.
Cesium fountain frequency standards

Cesium fountain clocks provide most precise and accurate measurements of time and frequency. Most of the developed countries have developed such clocks which are already operating as primary standards. CSIR- National Physical Laboratory India (NPLI) started efforts to realize India’s first fountain clock only few years back. The first cesium atomic fountain (India-CsF1) frequency standard is now completely assembled and operational. The CsF1 fountain has a (0, 0, 1) geometry of the magneto-optical trap (MOT) for cooling and launching operations. In this geometry, four out of the six cooling beams are in horizontal plane and other are going up and down, respectively. The atoms are first loaded and cooled in MOT followed by further cooling in optical molasses (OM). They are launched using moving molasses (frequency detuning of vertical beams) and cooled further with polarization gradient cooling. The operational parameters are currently being optimized and the complete frequency evaluation will soon be done.

The division has recently started a project to design and build a second Cs fountain (NOVOCEF) with special design features that enable us to carefully investigate the systematic errors in order to enhance the accuracy of our frequency standard to a few parts in 10^{16} – which would be at the level of the best in the world. One special feature of the design would be to employ a novel method of optical pumping using two lasers to enhance the number of cold atoms taking part in the microwave interrogation process. It is also planned to use an elaborate design of the microwave cavity in order to reduce “distributed microwave cavity phase shift”.

Contact:
Dr. P. Arora/ Dr Ashish Agarwal
Room: 132/128B, Main Building
CSIR – NPL, Dr. K. S. Krishnan Marg
New Delhi – 110012
Email: arorap@nplindia.org/
ashish@nplindia.org
Ph: +91 4560 9233/8384
Fax: +91 4560 9240
CSIR-NPL has developed and transferred the critical technology of Rubidium atomic clock for space applications to ISRO. A model has been developed at CSIR-NPL and is undergoing further developments at Satellite Applications Center before being integrated in the payload of the Indian Regional Navigation Satellite system.

Further critical process for development of glass technology of Rubidium bulbs and cells is under development at CSIR-NPL for making the indigenization of space clocks complete.
Optical Frequency Standard

An optical frequency standard is based on optically probed narrow linewidth electronic transition of some atoms or ions. An optical clock has much higher accuracy as it operates at few hundred THz frequency region compared to the conventional microwave atomic clocks. In NPLI, we are developing an optical frequency standard based on an ultra-narrow optical transition in single trapped Ytterbium ion (171Yb$^+$). For 171Yb$^+$ the lowest lying excited state is $^2D_{3/2}$ which decays to the $^2S_{1/2}$ ground state via an electric quadrupole transition at 435.5 nm. The long lived $^2D_{3/2}$ state has natural decay time of several years, which leads to an extremely narrow natural line width (3.1 Hz) of that transition. A Paul trap will be used to trap a single 171Yb$^+$ and the temperature of the ion will be reduced to few micro Kelvin by laser cooling technique. A closed laser cooling scheme using 369.5 nm transition can be realized by implying two additional lasers at 935 nm and 638 nm for repumping. Finally fluorescence at 435.5 nm is will be used to drive the $^2S_{1/2}$ $(F=0) - ^2D_{3/2}$ $(F=2)$ clock transition, and the ion state will be determined by electron shelving technique.

171Yb$^+$ energy level diagram, energies are in GHz unit.
Scientists and Technical Staff:

1. Dr. Amitava Sen Gupta
2. Mr. Kavindra Pant
3. Mrs. Arunadhati Chatterjee
4. Mr. A. K. Suri
5. Dr. Ashish Agarwal
6. Dr. Subhasis Panja
7. Dr. Poonam Arora
8. Dr. Subhadeep De
9. Mrs. Pranalee Thorat
10. Mrs. Suchi Yadav
11. Mrs. Preeti Kandpal
12. Mr. Mahavir Prasad Olaniya

Students and Project Fellow:

1. Mr. Aishik Acharya
2. Mr. Nirbindu Das
3. Mr. Vattikonda Bharath
4. Ms. Sathi Chakraborti
5. Ms. Amrita Awasthi
6. Ms. Swati Bansal
7. Mr. Anirudh Thakur
8. Ms. Himani Kohli
9. Ms. Neha Batra
10. Mr. Ashutosh Sinha
11. Mr. Dynu K. Daniel
12. Mr. Thangjam Jayenta Singh
13. Mr. Vijay Kumar

Supporting Staff:

1. Mr. Rakesh Kaushik
2. Mr. Amar Singh
3. Mr. Ved Prakash
4. Mr. Ram Sajjan
5. Mr. Harish Bisht
6. Mr. Prem Chand
7. Mr. Devender Kumar
Dr. Amitava Sen Gupta

Outstanding Scientist (NPL ID: 2835)

Contact: Room 128B, Main Building National Physical Laboratory Dr. K. S. Krishnan Marg New Delhi - 110012, India.

Email: sengupta@mail.nplindia.org

Phone: +91-(0)11-4560 8343(O)
 +91-(0)11-4560 9240(O)
 +91-(0)11-25274267(R);

Fax: +91-(0)11-4560 9240

Curriculum Vitae (attached)

Research interest:

• Maintaining time and frequency standards in India.
• Microwave frequency synthesis for atomic standards.
• Cesium fountain frequency standard.
• Optical frequency standards.
Kavindra Pant

Project Advisor
Ex. Senior Principal Scientist

Contact: Room 127, Main Building
National Physical Laboratory
Dr. K. S. Krishnan Marg
New Delhi - 110012, India.

Email: pantk@mail.nplindia.org,
pantknpl@gmail.com

Phone: +91-9958305666

Fax: +91-(0)4560 9240

Curriculum Vitae (attached)

Research interest:

Power Electronics, Development of Analog and Digital electronic circuits etc. Presently involved in the development of Electronic circuits for Cesium Atomic Fountain Clock
Mrs. Arundhati Chatterjee

Scientist (NPL ID 3086)

Contact: Room 34, Main Building
National Physical Laboratory
Dr. K. S. Krishnan Marg
New Delhi - 110012, India.

Email: arunadhati@nplindia.org

Phone: +91-(0)11-4560 8601(O)

Fax: +91-(0)11-4560 9240

Research Interest:
Research and development on Time and Frequency activity

Curriculum Vitae (attached)
Dr. Ashish Agarwal

Senior Scientist (NPL ID: 4154)

Contact: Room 128B, Main Building
National Physical Laboratory
Dr. K. S. Krishnan Marg
New Delhi - 110012, India.

Email: ashish@mail.nplindia.org

Phone: +91-(0)11-4560 8384(O)
+91 – 9868806150 (Cell);

Fax: +91-(0)11-4560 9240

Research interest:

- Laser Physics, Quantum Optics and Nonlinear optics
- Time and Frequency Metrology
- Cesium Fountain Frequency Standard
- Rubidium Atomic Clock based Space Clocks
- Optical Frequency Standards.

Curriculum Vitae (attached)
Dr. Subhasis Panja

Senior Scientist (NPL ID: 5086)

Contact: Room 132, Main Building
National Physical Laboratory
Dr. K. S. Krishnan Marg
New Delhi - 110012, India.

Email: subhasis.panja@gmail.com;
panjas@mail.nplindia.org

Phone: +91-(0)11-4560 9229(O)
+91 – 9811676004 (Cell);

Fax: +91-(0)11-4560 9240

Research interest:

• Time and Frequency Metrology: Development of single trap Ytterbium (171Yb$^+$) ion optical frequency standards.
• Studies of isolated and solvated molecular ions in ion accelerators and in ion-storage ring and their optical spectroscopy.
• Ultrafast Laser pulse generation, Laser spectroscopy, White light generation, Photophysics and Photochemistry.

Curriculum Vitae (attached)
Dr. Poonam Arora

Scientist (NPL ID 5000)

Contact: Room 132, Main Building
National Physical Laboratory
Dr. K. S. Krishnan Marg
New Delhi - 110012, India.

Email: arorap@nplindia.org,
poonam.arora@gmail.com

Phone: +91-(0)11-4560 92(O)
+91-(0)11-4560 9229

Fax: +91-(0)11-4560 9240

Research Interest:

• Time & Frequency Metrology
• Cesium fountain frequency standards
• Optical frequency standards
• Applied optics & Photonics, Lasers & quantum optics

Curriculum Vitae (attached)
Dr. Subhadeep De

Scientist (NPL ID 5090)

Contact: Room 132, Main Building National Physical Laboratory Dr. K. S. Krishnan Marg New Delhi - 110012, India.

Email: sde.subhadeep@gmail.com subhadeep@mail.nplindia.org

Phone: +91-(0)11-4560 9229 (O)
 +91-(0)11-2874 5807 (R)
 +91-8860179175 (M)

Fax: +91-(0)4560 9240

Research Interest:

- Time and frequency metrology: building facility to trap single Ytterbium ion for an optical frequency standard (STIOS project at NPLI).
- Studying many-body dynamics in Bose Einstein Condensate and Degenerate Fermi Gases.
- Studying quantum phases and phase transitions with ultra-cold atoms in optical lattice for the realization of qubit for quantum computers.

Curriculum Vitae (attached)
Mrs. Pranalee P. Thorat

Scientist (NPL ID 4830)

Contact: Room 34, Main Building
National Physical Laboratory
Dr. K. S. Krishnan Marg
New Delhi - 110012, India.

Email: thoratpp@nplindia.org,
pranuthorat@gmail.com

Phone: +91-(0)11-4560 9323(O)
Fax: +91-(0)11-4560 9240

Curriculum Vitae (attached)

Research Interest:

Currently involved in precise time & frequency activities viz.
Teleclock service, Network Time Service, Implementation of
PAN INDIA PAN TIME Concept, Time Scale Generation & its
Improvement, Introduction of Kalman Filter Algorithm in the
Time Scale, Precise Inter-comparison of remote clocks,
Introduction of TWSTFT to link Europe and Asia, PTP
Implementation, Identifying sources of errors and searching
for their remedial measure in the time link etc., etc.
Technical Assistant (NPL ID:5039)

Contact: Room 34, Main Building
National Physical Laboratory
Dr. K. S. Krishnan Marg
New Delhi - 110012, India.

Email: kandpalp@nplmail.india.org

Phone: 011-45609323

Fax: +91-(0)4560 9240

Research Interest:

Current activities are: Installation, operation & maintenance of Two Way Satellite Time & Frequency Transfer system, Installation, operation and maintenance of GPS receiver, Data analysis for P3 and PPP of GPS, Time scale generation UTC-NPLI.
Mr. Mahavir Prasad Olaniya

Technical Assistant (NPL ID: 5044)

Contact: Room 127C, Main Building
National Physical Laboratory
Dr. K. S. Krishnan Marg
New Delhi - 110012, India.

Email: olaniyamp@nplindia.org

Phone: +91-11-45609224

Fax: +91-(0)11-4560 9240

Research Interest:

• I am working in the area of maintaining Time scale UTC(NPLI) and its link with the BIPM using GPS satellites and Two-way satellite time and frequency transfer (TWSTFT).

Curriculum Vitae (attached)
Find our photos at: https://plus.google.com/photos/108722323066025213151/albums

Drop your comment at: npli.time.frequency@gmail.com