Significant Achievements
Establishing New Standards

Force

Force Standards - Hardness Standardizing machine

The New Primary Hardness Machines are Established for Realization of hardness scale

Great Demand of the Nation - Testing of Concrete and Hard materials (wide utilization in Defense, Space, Highway, Metro, Over Bridge, Tunnel etc.) with traceability to International standards

Acoustics

Acoustics, Vibration and Ultrasonic Standards

- Establishment of Primary Standard of Vibration using Laser Interferometer for calibration of reference standard accelerometer with an uncertainty of 0.3 % (at 160 Hz) at par with PTB Germany.

- Establishment of Secondary Sound Standard for providing calibration services for microphones and other sonic devices
Establishing New Standards Continued ...

Time

First Cold Atom Cesium Fountain (CsF1) primary frequency standard.

India-CsF1 has become operational.

- C-field mapping, frequency locking with H maser and stability analysis being performed.
- State selection is being implemented and accuracy evaluation is under progress.
Establishing New Standards Continued...

Dimension

Long Gauge Blocks Measurement
Using He-Ne Laser Interferometer

![Image of measurement equipment](image)

Nominal Range: 0-4000 mm
Working Range: 0-3700 mm
Resolution: 0.01 µm
Maximum Error: 1.5 µm
Repeatability: 0.1 µm

AC High Voltage & High Current
(Standards for Power Sector)

An innovative idea of the measurement of HV Divider up to 200kV almost double of our present 100kV capacity has been generated. A 200kV HV Divider from M/s. KVTEK Gurgaon has been calibrated.

Set up for 200 kV HV Divider
Materials & Products

CVD reactor for multiwalled CNTs

Very high yield – Key facility of fuel cell program

- Low temperature growth of graphene by PECVD
- UHV sublimation of Si from SiC
- Electric arc facility for single-wall CNT

Carbon–carbon composite fuel tubes

(for Compact High Temperature Nuclear Reactors at BARC)

- Carbon-carbon composite tubes were successfully developed and handed over to Scientists from BARC for the high temperature nuclear reactor.

- The technology involves weaving 3-D carbon fibre preform followed by repeated cycles of coal tar pitch impregnation, high pressure carbonization and graphitization to achieve a density of 1.8 g/cc

- These tubes will encounter temperature of 800-900°C and are designed to carry molten lead as heat exchanger and also to store nuclear fuel.

Dimensions: 500 mm x 75 mm OD x 35 mm with 12 holes of 10 mm dia. Each up to 400/450 mm depth on 55 mm PCD.
Materials & Products Continued …

Conducting polymer paints and coatings for corrosion protection

An outcome of joint efforts under NWP-12 (CSIR-NPL; CSIR-CECRI & CSIR-NCL)
NDA signed with M/s Krishna Conchem Products Pvt. Ltd., Navi Mumbai

![Conventional Epoxy Coatings](image1)

![Conducting Polymers Based Coatings](image2)

Composites bipolar plate
- Separate the individual fuel cells from Each other
- Distribute fuel and oxidant
- Carry current away from the cell
- Support for MEA

Porous carbon paper
- Provide reactant gases access from flow filed channels to catalyst layer
- Provide passage for removal of product water from catalyst layer
- Mechanical support to MEA

![Composites bipolar plate](image3)

![Porous carbon paper](image4)

Polymer Electrolyte Fuel Cell (PEFC)
- Developed indigenous knowhow for key components of PEFC's
- Performance benchmarked against global standards
- Built 1 kW PEFC prototype plant
- Demonstrated durability
- 9 Patents, 45 Papers, 7 Ph.D.s
- Manufacturing of components by MSME; vendor development under progress
- Technology validation at Reliance Industries site in Pataigna

CSIR – NMITLI Programme
- Materials development & continuous improvement
- Prototypes & test beds
- Licensing knowhow

Industrial Consortium
- Manufacturing components
- Technology validation
- Technology deployment